Mod sum graph labelling of Hm, n and Kn

نویسندگان

  • Martin Sutton
  • Mirka Miller
چکیده

The mod sum number p( G) of a connected graph G is the minimum number of isolated vertices required to transform G into a mod sum graph. It is known that the mod sum number is greater than zero for wheels, Wn, when n > 4 and for the complete graphs, Kn when n 2: 2. In this paper we show that p( Hm,n) > 0 for n > m ;::: 3. Vie show further that P(K2) = P(K3) = 1 while p(Kn) = n for n ;::: 4. We thus provide for the first time q,n exact nonzero mod sum number for an infinite class of graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong and Semi Strong Outer Mod Sum Graphs

A semi strong outer mod sum labeling of a graph G is an injective mapping f : V (G) → Z+ with an additional property that for each vertex v of G, there exist vertices w1, w2 in V (G) such that f(w1) = ∑ u∈N(v) f(u) and f(v) = ∑ u∈N(w2) f(u), where both the sums are taken under addition modulo m for some positive integer m. A graph G which admits a semi strong outer mod sum labeling is called a ...

متن کامل

The characterization of zero-sum (mod 2) bipartite Ramsey numbers

Let G be a bipartite graph, with k | e(G). The zero-sum bipartite Ramsey number B(G,Zk) is the smallest integer t such that in every Zk-coloring of the edges of Kt,t, there is a zero-sum mod k copy of G in Kt,t. In this paper we give the first proof which determines B(G,Z2) for all possible bipartite graphs G. In fact, we prove a much more general result from which B(G,Z2) can be deduced: Let G...

متن کامل

Diagonal forms and zero-sum (mod 2) bipartite Ramsey numbers

Let G be a subgraph of a complete bipartite graph Kn,n. Let N(G) be a 0-1 incidence matrix with edges of Kn,n against images of G under the automorphism group of Kn,n. A diagonal form of N(G) is found for every G, and whether the row space of N(G) over Zp contains the vector of all 1’s is determined. This re-proves Caro and Yuster’s results on zero-sum bipartite Ramsey numbers [3], and provides...

متن کامل

A Complete Characterization of the Zero-Sum (mod 2) Ramsey Numbers

THEOREM. Let G be a graph on n vertices and an euen number of edges. Then the zero-sum (mod 2) Ramsey numbers are given by {i +2 R(G, ~2) = + 1 +t ifG=Kn, n =0,1(mod4) if all the degrees in G are odd otherwise. 0 (mod 2) This settles several problems raised mainly by Noga Alon, Arie Bialostocki, and Yehuda Roditty.

متن کامل

Title Cycle Systems in the Complete Bipartite Graph plus a One- Factor Cycle Systems in the Complete Bipartite Graph plus a One-factor *

Let Kn,n denote the complete bipartite graph with n vertices in each partite set and Kn,n+I denote Kn,n with a one-factor added. It is proved in this paper that there exists an m-cycle system of Kn,n + I if and only if n ≡ 1 (mod 2), m ≡ 0 (mod 2), 4 ≤ m ≤ 2n, and n(n + 1) ≡ 0 (mod m).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999